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Analysis of Variance Method: 
 

ANOVA (AOV) is a test for comparing more than „2‟ 

populations means, which is developed under 

following conditions: 

Inferences about More than Population 
Central Values 
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Analysis of Variance Method: 
 

ANOVA (AOV) is a test for comparing more than „2‟ 

populations means, which is developed under 

following conditions: 
 

- Each of the populations has a normal distribution. 

- The variances of the populations are equal. 

- Measurements are independent random samples from 

their respective populations. 

Inferences about More than Population 
Central Values 
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Analysis of Variance Method: 
 

Inferences about More than Population 
Central Values 

Population ‘1’ … Population ‘t’ 

Sample 

Values 

𝒚𝟏𝟏 … 𝒚𝒕𝟏 

𝒚𝟐𝟏 … 𝒚𝒕𝟐 

⋮ … ⋮ 

𝒚𝟏𝒏𝟏 … 𝒚𝒕𝒏𝒕  

 𝒚 ..  
overall mean Mean 𝒚 𝟏. … 𝒚 𝒕. 
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Analysis of Variance Method: 
 

Let 𝒔𝑻
𝟐 be the sample variance of the 𝒏𝑻 =  𝒏𝒊

𝑻
𝒊=𝟏  

measurements 𝒚𝒊𝒋 (variability of the whole 

measurements about the overall mean) 
 

𝒔𝑻
𝟐 =

  𝒚𝒊𝒋 − 𝒚 ..
𝟐𝒏𝒕

𝒋=𝟏
𝒕
𝒊=𝟏

𝒏𝑻 − 𝟏
 

Inferences about More than Population 
Central Values 
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Analysis of Variance Method: 
 

Let 𝒔𝑻
𝟐 be the sample variance of the 𝒏𝑻 =  𝒏𝒊

𝑻
𝒊=𝟏  

measurements 𝒚𝒊𝒋 (variability of the whole 

measurements about the overall mean) 
 

𝒔𝑻
𝟐 =

  𝒚𝒊𝒋 − 𝒚 ..
𝟐𝒏𝒕

𝒋=𝟏
𝒕
𝒊=𝟏

𝒏𝑻 − 𝟏
 

Inferences about More than Population 
Central Values 

Total sum 

of squares 
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Analysis of Variance Method: 
 

  𝒚𝒊𝒋 − 𝒚 ..
𝟐

𝒏𝒕

𝒋=𝟏

𝒕

𝒊=𝟏

=  𝒚𝒊𝒋 − 𝒚 𝒊.
𝟐

𝒏𝒕

𝒋=𝟏

𝒕

𝒊=𝟏

+ 𝒏𝒊 𝒚 𝒊. − 𝒚 ..
𝟐

𝒕

𝒊=𝟏

 

 
              Within-Sample         Between-Sample 

              Sum of squares         Sum of squares 

 

𝒔𝑩
𝟐 =

𝑺𝑺𝑩

𝒕 − 𝟏
  , 𝒔𝑾

𝟐 =
𝑺𝑺𝑾

𝒏𝒕 − 𝒕
 

Inferences about More than Population 
Central Values 
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Analysis of Variance Method: 
 

Inferences about More than Population 
Central Values 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F Test 

Between Samples 𝑺𝑺𝑩 𝒕 − 𝟏 𝒔𝑩
𝟐 = 𝑺𝑺𝑩 (𝒕 − 𝟏)  𝒔𝑩

𝟐 𝒔𝑾
𝟐  

Within Samples SSW 𝒏𝑻 − 𝑻 𝒔𝑾
𝟐 = 𝑺𝑺𝑾 (𝒏𝑻 − 𝒕)  

Total TSS 𝒏𝑻 − 𝟏 
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Analysis of Variance Method: 
 

Test Statistic: 𝑭 =
𝒔𝑩
𝟐

𝒔𝒘
𝟐 ~𝑭(𝒕 − 𝟏, 𝒏𝑻 − 𝒕) 

Inferences about More than Population 
Central Values 

• Reject 𝐻0 if ‘F’ exceeds 
𝐹𝛼, 𝑡−1 ,(𝑛𝑇−𝑡)  

𝐻0: 𝜇1 = ⋯ = 𝜇𝑡 

𝐻𝑎: at least one of the ‘t’ 
population means 
differ from the rest 
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Checking on AOV Conditions: 
 

- Equality of the population variances 

- Using Hartely‟s of BFL Test (Brown-Forsythe-Levene) 

- When the sample sizes are nearly equal ,  

    this assumption is less critical 

Inferences about More than Population 
Central Values 
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Checking on AOV Conditions: 
 

- Equality of the population variances 

- Using Hartely‟s of BFL Test (Brown-Forsythe-Levene) 

- When the sample sizes are nearly equal ,  

    this assumption is less critical 

Inferences about More than Population 
Central Values 

Using a 

transformation 

to stabilize the 

variance 
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Checking on AOV Conditions: 
 

- Equality of the population variances 

- Using Hartely‟s of BFL Test 

- When the sample sizes are nearly equal ,  

    this assumption is less critical 
 

- Normality 

- Using graphs and normality tests 

Inferences about More than Population 
Central Values 
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Checking on AOV Conditions: 
 

- Equality of the population variances 

- Using Hartely‟s of BFL Test 

- When the sample sizes are nearly equal ,  

    this assumption is less critical 
 

- Normality 

- Using graphs and normality tests 

Inferences about More than Population 
Central Values 

Using  

Kruskal-Wallis 

Test 



Training Workshop on Statistical Data Analysis 8-21 July 2011 Afsaneh Yazdani 

Checking on AOV Conditions: 
 

- Equality of the population variances 

- Using Hartely‟s of BFL Test 

- When the sample sizes are nearly equal ,  

    this assumption is less critical 
 

- Normality 

- Using graphs and normality tests 
 

- Independence 

- Careful review of how measurements has been gathered 

Inferences about More than Population 
Central Values 
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Multiple Comparisons: 
 

If  𝐻0: 𝜇1 = ⋯ = 𝜇𝑡 is rejected, we want to know 

which means differ from each other. 

 

Inferences about More than Population 
Central Values 
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Multiple Comparisons: 
 

If  𝐻0: 𝜇1 = ⋯ = 𝜇𝑡 is rejected, we want to know 

which means differ from each other. 

 

Inferences about More than Population 
Central Values 

Multiple-Comparison 
Procedures 
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Multiple Comparisons Procedures 
 

- Fisher‟s Least Significant Difference (LSD) 

- Tukey‟s W 

- Student–Newman–Keuls 

Inferences about More than Population 
Central Values 

Procedures for 

Pairwise Comparisons 

of ‘t’ Population 

Means 
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Multiple Comparisons Procedures 
 

- Fisher‟s Least Significant Difference (LSD) 

- Tukey‟s W  

- Student–Newman–Keuls 

Inferences about More than Population 
Central Values 

Tukey is more 

conservative than LSD 

and SNK 
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Multiple Comparisons Procedures 
 

- Fisher‟s Least Significant Difference (LSD) 

- Tukey‟s W  

- Student–Newman–Keuls 

Inferences about More than Population 
Central Values 

Tukey’s limitation 

is that, it must be based 

on equal size ‘n’ from 

each population 
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Multiple Comparisons Procedures 
 

- Fisher‟s Least Significant Difference (LSD) 

- Tukey‟s W (Tukey-Kramer 𝑊∗) 

- Student–Newman–Keuls 

Inferences about More than Population 
Central Values 

Tukey’s limitation 

is that, it must be based 

on equal size ‘n’ from 

each population 
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Multiple Comparisons Procedures 
 

- Scheffe‟s Method 

 

Inferences about More than Population 
Central Values 

More general procedure that can be 

used to make all possible 

comparisons among 

the ‘t’ population means. 



Training Workshop on Statistical Data Analysis 8-21 July 2011 Afsaneh Yazdani 

Multiple Comparisons Procedures 
 

- Scheffe‟s Method 

 

Inferences about More than Population 
Central Values 

- More conservative Procedure 

- Can also be used for constructing a 

simultaneous confidence interval for all 

possible (not necessarily pairwise) 

contrasts using the ‘t’ population 

means. 
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Multiple Comparisons Procedures 
 

- Fisher‟s Least Significant Difference (LSD) 

- Tukey‟s W (Tukey-Kramer 𝑊∗) 

- Student–Newman–Keuls 

- Scheffe‟s Method 

 

- Kruskal–Wallis Nonparametric Procedure 

Inferences about More than Population 
Central Values 
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Categorical Data 
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We sometimes encounter situations in which levels 

of a variable of interest are identified by: 

- Name 

- Rank 

- Number of observations occurred at each level of 

variable, … 

Categorical Data 
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We sometimes encounter situations in which levels 

of a variable of interest are identified by: 

- Name 

- Rank 

- Number of observations occurred at each level of 

variable, … 

Categorical or 

Count Data 

Categorical Data 
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Inferences about a Population 

Proportion ‘’ 
In binomial experiment, the probability distribution 

of „y‟ (number of success in „n‟ identical trials) is: 

𝑷 𝒚 =
𝒏!

𝒚! 𝒏 − 𝒚 !
𝝅𝒚(𝟏 − 𝝅)𝒏−𝒚 

Categorical Data 
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Inferences about a Population 

Proportion ‘’ 
In binomial experiment, the probability distribution 

of „y‟ (number of success in „n‟ identical trials) is: 

𝑷 𝒚 =
𝒏!

𝒚! 𝒏 − 𝒚 !
𝝅𝒚(𝟏 − 𝝅)𝒏−𝒚 

Probability 

of Success 

Categorical Data 
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Inferences about a Population 

Proportion ‘’ 
In binomial experiment, the probability distribution 

of „y‟ (number of success in „n‟ identical trials) is: 

𝑷 𝒚 =
𝒏!

𝒚! 𝒏 − 𝒚 !
𝝅𝒚(𝟏 − 𝝅)𝒏−𝒚 

𝝁𝝅 = 𝝅  ,  𝝈𝝅 =
𝝅(𝟏−𝝅)

𝒏
 

Categorical Data 
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Confidence Interval for ‘’ with 

Confidence Coefficient of (1-𝜶) 
 

(𝝅 − 𝒛𝜶
𝟐
 𝝈 𝝅  , 𝝅 + 𝒛𝜶

𝟐
 𝝈 𝝅 ) 

 

Where 
 

𝝅 =
𝒚

𝒏
 and 𝝈 𝝅 =

𝝅 (𝟏−𝝅 )

𝒏
 

Categorical Data 
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Sample Size Required for a 𝟏𝟎𝟎 𝟏 − 𝜶 % 

Confidence Interval for ‘’ of the form 𝝅 ± 𝑬  
 

 

𝐧 =

𝒛𝜶
𝟐

𝟐  𝝅(𝟏 − 𝝅)

𝑬𝟐
 

Categorical Data 
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Statistical Test for ‘’ 
(Under 𝑯𝟎, 𝝈𝝅 = 𝝅𝟎(𝟏 − 𝝅𝟎) 𝒏 , and „n‟ must satisfy both 𝒏𝝅𝟎 ≥ 𝟓 

and 𝒏(𝟏 − 𝝅𝟎) ≥ 𝟓) 

Test Statistic: 𝒛 =
𝝅 −𝝅𝟎

𝝈𝝅 
~𝐍(𝟎, 𝟏) 

 
• Reject 𝐇𝟎 if  𝒛 > −𝒛𝜶   

𝐇𝟎: 𝝅 ≤ 𝝅𝟎

𝐇𝐚: 𝝅 > 𝝅𝟎
 

• Reject 𝐇𝟎 if  𝒛 < −𝒛𝜶  
𝐇𝟎: 𝝅 ≥ 𝝅𝟎

𝐇𝐚: 𝝅 < 𝝅𝟎
 

• Reject 𝐇𝟎 if |𝐳| > −𝒛𝜶
𝟐
  

𝐇𝟎: 𝝅 = 𝝅𝟎

𝐇𝐚: 𝝅 ≠ 𝝅𝟎
 

Categorical Data 
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Inferences about two populations proportions 

Categorical Data 

Population 1 Population 2 

Population Proportion 𝜋1 𝜋2 

Sample Size 𝑛1 𝑛1 

Number of Success 𝑦1 𝑦2 

Sample Proportion 𝜋 1 =
𝑦1
𝑛1

 𝜋 2 =
𝑦2
𝑛2
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Confidence Interval for ‘𝝅𝟏 − 𝝅𝟐’ with 

Confidence Coefficient of (1-𝜶) 
 

(𝝅 𝟏 − 𝝅 𝟐) ± 𝒛𝜶
𝟐
 𝝈 𝝅 𝟏−𝝅 𝟐  

 

Where 
 

𝝈 𝝅 𝟏−𝝅 𝟐 =
𝝅 𝟏(𝟏−𝝅 𝟏)

𝒏𝟏
+

𝝅 𝟐(𝟏−𝝅 𝟐)

𝒏𝟐
  

Categorical Data 
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Statistical Test for ‘𝝅𝟏 − 𝝅𝟐’ 
(Under 𝑯𝟎, 𝝈 𝝅 𝟏−𝝅 𝟐 = 𝝅 𝟏(𝟏 − 𝝅 𝟏) 𝒏𝟏 + 𝝅 𝟐(𝟏 − 𝝅 𝟐) 𝒏𝟐 , 

 „𝒏𝟏‟ and „𝒏𝟐‟ must satisfy both 𝒏𝝅𝟎 ≥ 𝟓 and 𝒏(𝟏 − 𝝅𝟎) ≥ 𝟓) 

Test Statistic: 𝒛 =
𝝅 𝟏−𝝅 𝟐

𝝈 𝝅 𝟏−𝝅 𝟐
~𝐍(𝟎, 𝟏) 

 
• Reject 𝐇𝟎 if  𝒛 > −𝒛𝜶   

𝐇𝟎: 𝝅𝟏 ≤ 𝝅𝟐

𝐇𝐚: 𝝅𝟏 > 𝝅𝟐
 

• Reject 𝐇𝟎 if  𝒛 < −𝒛𝜶  
𝐇𝟎: 𝝅𝟏 ≥ 𝝅𝟐

𝐇𝐚: 𝝅𝟏 < 𝝅𝟐
 

• Reject 𝐇𝟎 if |𝐳| > −𝒛𝜶
𝟐
  

𝐇𝟎: 𝝅𝟏 = 𝝅𝟐

𝐇𝐚: 𝝅𝟏 ≠ 𝝅𝟐
 

Categorical Data 
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Inferences about ‘k’ proportions 
(Chi-square Goodness-of-Fit Test, where 𝑬𝒊 = 𝒏𝝅𝒊𝟎) 

Test Statistic: 𝟐 =  
(𝒏𝒊−𝑬𝒊)

𝟐

𝑬𝒊
~𝜶

𝟐(𝒌 − 𝟏) 

𝑯𝟎:  𝝅𝒊 = 𝝅𝒊𝟎 for categories 𝒊 = 𝟏,… , 𝒌, 𝝅𝒊𝟎 are 

specified probabilities or proportions 

𝑯𝒂: At least one of the cell probabilities differs 

from the hypothesized values 

Categorical Data 
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Contingency Tables (Cross Tabulations) 

Categorical Data 

Variable 2 

Level 1 … Level c 

V
a
ri

a
b

le
 1

 

Level 1 𝑛11 … 𝑛1𝑐 𝑛1. 

⋮ ⋮ ⋮ 

Level r 𝑛𝑟1 … 𝑛𝑟𝑐 𝑛𝑟. 

𝑛.1 … 𝑛.𝑐 𝑛.. 
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Contingency Tables (Cross Tabulations) 

Categorical Data 

Variable 2 

Level 1 … Level c 

V
a
ri

a
b

le
 1

 

Level 1 𝑛11 … 𝑛1𝑐 𝑛1. 

⋮ ⋮ ⋮ 

Level r 𝑛𝑟1 … 𝑛𝑟𝑐 𝑛𝑟. 

𝑛.1 … 𝑛.𝑐 𝑛.. 

Dependence 

of variables 

means that one 

variable has 

some 

value for 

predicting the 

other 
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Test of Independence 
 

Test Statistic:

 𝟐 =   
(𝑛𝑖𝑗−𝑬 𝑖𝑗)

𝑬 𝒊𝒋

𝟐
𝒄
𝒋=𝟏

𝒓
𝒊=𝟏 ~𝜶

𝟐 (𝒓 − 𝟏)(𝒄 − 𝟏)  

𝑯𝟎: The row and column variables are independent 

𝑯𝒂: The row and column variables are dependent 
(associated) 

Categorical Data 
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Test of Independence 
 

Test Statistic:

 𝟐 =   
(𝑛𝑖𝑗−𝑬 𝑖𝑗)

𝑬 𝒊𝒋

𝟐
𝒄
𝒋=𝟏

𝒓
𝒊=𝟏 ~𝜶

𝟐 (𝒓 − 𝟏)(𝒄 − 𝟏)  

𝑯𝟎: The row and column variables are independent 

𝑯𝒂: The row and column variables are dependent 
(associated) 

Categorical Data 

There is an alternative 

statistic, called the 

likelihood ratio statistic 

that is often shown in 

computer outputs. 
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Measuring Strength of Relation 
 

- Kendall‟s Tau Correlation Coefficient 

- Contingency Coefficient 

- Spearman‟s Ranked Correlation Coefficient 

- Phi‟s Coefficient 

- Cramer‟s V 

Categorical Data 
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Linear 
Regression 
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Modeling of the 

 relationship between 

 a response variable and a set of explanatory 

variables. 

Linear Regression 

Regression 

Analysis 
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A regression model provides the user with a functional 

relationship between the response variable and 

explanatory variables that allows the user to: 

 

Determine which of the explanatory variables have an 

effect on the response.  

 

 Explore what happens to the response variable for 

specified changes in the explanatory variables. 

 

Linear Regression 
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Uses of Regression Models: 
 

- Provides a description of data set (which of the 

explanatory variables affect the response variable) 
 

- Provides estimates of the response variable for values of 

the explanatory not observed in the study, or expensive 

to measure 
 

- Prediction 

 

 

 

Linear Regression 
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Uses of Regression Models: 
 

- Provides a description of data set (which of the 

explanatory variables affect the response variable) 
 

- Provides estimates of the response variable for values of 

the explanatory not observed in the study, or expensive 

to measure 
 

- Prediction 

 

 

 

Linear Regression 

The accuracy of the estimates and 

prediction depends on: 

- How well the final model fits the 

observed data 

- Stability of the conditions during 

which observed data were collected, 

over the prediction period 
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Prediction Versus Explanation 

 

 

 

Explanation is easier than Prediction 

 

Both of them use the connection between  

explanatory (independent) and response (dependent) 

 

 

 

 

Linear Regression 

Future Value Current or past values 
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Simple Regression 
 

There is a single independent variable and the equation for 

predicting a dependent variable „y‟ is a linear function of a 

given independent variable „x‟. 

 

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝒊 + 𝒊 

 

 

 

 

 

Linear Regression 

Intercept Slope 

Random 

Error Term 
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Simple Regression 
 

There is a single independent variable and the equation for 

predicting a dependent variable „y‟ is a linear function of a 

given independent variable „x‟. 

 

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝒊 + 𝒊 

 

 

 

 

 

Linear Regression 

Intercept Slope 

The slope of 

the equation 

does not 

change as 

„x‟ changes 
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Simple Regression 
 

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝒊 + 𝒊 

 

 

 

 

 

Linear Regression 

Intercept Slope 
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Checking for Linearity 
 

Checking by looking at a scatterplot of data 

 

 

Linear Regression 

Linear 

Relation 

OK 
Choosing 

Transformations 

- Inverse 

- Square Root 

- Natural 

Logarithm 
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Regression Modeling Steps: 
 

1- Specify model and estimate unknown parameters 

 

2- Evaluate model 

 

3- Use model for prediction and estimation 

 

 

 

Linear Regression 
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Estimating Model Parameters 
 

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝒊 + 𝒊 
 

Least-square estimates for slope and intercept: 
 

𝜷 𝟏 =
𝑺𝒙𝒚

𝑺𝒙𝒙
 , 𝜷 𝟎 = 𝒚 − 𝜷 𝟏𝒙  

 

𝑺𝒙𝒚 =  (𝒙𝒊 − 𝒙 )(𝒚𝒊 − 𝒚 )𝒊  and 𝑺𝒙𝒙 =  (𝒙𝒊 − 𝒙 )𝟐𝒊  

 

 

Linear Regression – Specifying Model 
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Estimating Model Parameters 
 

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝒊 + 𝒊 
 

The estimate of the regression slope can potentially be 

greatly affected by “high leverage points”. 
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Estimating Model Parameters 
 

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝒊 + 𝒊 
 

The estimate of the regression slope can potentially be 

greatly affected by “high leverage points”. 

 
Points that have 

very high or very low values 

of independent variables 

Linear Regression – Specifying Model 
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Estimating Model Parameters 
 

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝒊 + 𝒊 
 

The estimate of the regression slope can potentially be 

greatly affected by “high leverage points”. 

 
High leverage point whose „y‟ 

value is outlier, 

is “High Influence Point” 

Linear Regression – Specifying Model 
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Estimating Model Parameters 
 

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝒊 + 𝒊 
 

The estimate of the regression slope can potentially be 

greatly affected by “high leverage points”. 

 
A „y‟ which is outlier can not 

much affect the slope, if it is 

not a “high influence point” 

Linear Regression – Specifying Model 
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Inferences about Regression Parameters 
 

Test Statistic: 𝐭 =
𝜷 𝟏−𝟎

𝒔𝜺 𝑺𝒙𝒙 
~𝒕𝜶(𝒏 − 𝟐) 

Linear Regression – Evaluating Model 

• Reject 𝐇𝟎 if  t> 𝒕𝜶   
𝐇𝟎: 𝜷𝟏 ≤ 𝟎
𝐇𝐚: 𝜷𝟏 > 𝟎

 

• Reject 𝐇𝟎 if  𝒕 < −𝒕𝜶  
𝐇𝟎: 𝜷𝟏 ≥ 𝟎
𝐇𝐚: 𝜷𝟏 < 𝟎

 

• Reject 𝐇𝟎 if |𝐭| > 𝒕𝜶
𝟐
  

𝐇𝟎: 𝜷𝟏 = 𝟎
𝐇𝐚: 𝜷𝟏 ≠ 𝟎
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Inferences about Regression Parameters 
 

Test Statistic: 𝐅 =
𝑴𝑺(𝑹𝒆𝒈𝒓𝒆𝒔𝒔𝒕𝒊𝒐𝒏)

𝑴𝑺(𝑹𝒆𝒔𝒊𝒅𝒖𝒂𝒍)
~𝑭𝜶 (𝟏, 𝒏 − 𝟐) 

• Reject 𝐇𝟎 if  t> 𝒕𝜶   
𝐇𝟎: 𝜷𝟏 ≤ 𝟎
𝐇𝐚: 𝜷𝟏 > 𝟎

 

• Reject 𝐇𝟎 if  𝒕 < −𝒕𝜶  
𝐇𝟎: 𝜷𝟏 ≥ 𝟎
𝐇𝐚: 𝜷𝟏 < 𝟎

 

• Reject 𝐇𝟎 if |𝐭| > 𝒕𝜶
𝟐
  

𝐇𝟎: 𝜷𝟏 = 𝟎
𝐇𝐚: 𝜷𝟏 ≠ 𝟎

 

Linear Regression – Evaluating Model 
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Inferences about Regression Parameters 
 

Test Statistic: 𝐭 =
𝜷 𝟎−𝟎

𝒔𝜺
𝟏

𝒏
+

𝒙 𝟐

𝑺𝒙𝒙
 

~𝒕𝜶(𝒏 − 𝟐) 

• Reject 𝐇𝟎 if  t> 𝒕𝜶   
𝐇𝟎: 𝜷𝟎 ≤ 𝟎
𝐇𝐚: 𝜷𝟎 > 𝟎

 

• Reject 𝐇𝟎 if  𝒕 < −𝒕𝜶  
𝐇𝟎: 𝜷𝟎 ≥ 𝟎
𝐇𝐚: 𝜷𝟎 < 𝟎

 

• Reject 𝐇𝟎 if |𝐭| > 𝒕𝜶
𝟐
  

𝐇𝟎: 𝜷𝟎 = 𝟎
𝐇𝐚: 𝜷𝟎 ≠ 𝟎
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Examining the model using ‘𝑹𝟐’: 
 

𝑹𝟐 =
𝑬𝒙𝒑𝒍𝒂𝒊𝒏𝒆𝒅 𝑽𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏

𝑻𝒐𝒕𝒂𝒍 𝑽𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏
=
𝑺𝑺𝑴𝒐𝒅𝒆𝒍

𝑺𝑺𝑻𝒐𝒕𝒂𝒍
 

 

𝑹𝑨𝒅𝒋
𝟐 = 𝟏 −

𝑴𝑺𝑹𝒆𝒔𝒊𝒅𝒖𝒂𝒍
𝑴𝑺𝑻𝒐𝒕𝒂𝒍
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Examining the model using ‘𝑹𝟐’: 
 

𝑹𝟐 =
𝑬𝒙𝒑𝒍𝒂𝒊𝒏𝒆𝒅 𝑽𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏

𝑻𝒐𝒕𝒂𝒍 𝑽𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏
=
𝑺𝑺𝑴𝒐𝒅𝒆𝒍

𝑺𝑺𝑻𝒐𝒕𝒂𝒍
 

 

𝑹𝑨𝒅𝒋
𝟐 = 𝟏 −

𝑴𝑺𝑹𝒆𝒔𝒊𝒅𝒖𝒂𝒍
𝑴𝑺𝑻𝒐𝒕𝒂𝒍

 

 

 

Linear Regression – Evaluating Model 

Value closer to „1‟  

the model explains the variation more 
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Assumptions of Regression Analysis 
 

- The relation is linear, so that the errors all have expected 

value zero (𝑬 𝜺𝒊 = 𝟎; for all „i‟) 

- The errors are independent of each other. 

- The errors are all normally distributed 

- The errors all have the same variance (𝑽𝒂𝒓 𝜺𝒊 = 𝝈𝟐) 

 

𝜺𝒊 ~ 𝑵 (𝟎 , 𝝈
𝟐) 

Linear Regression - Evaluation 
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Checking Regression Assumptions 
1- Linearity 

 

- Draw Residual Plot Versus 𝒚 𝒊 = 𝒃𝟎 + 𝒃𝟏𝒙𝒊 to check for 

existence of non-linearity pattern 

 

- Using F-Test, where 𝑭∗ =
𝑴𝑺𝑳𝒂𝒄𝒌

𝑴𝑺𝑷𝒖𝒓𝒆 𝑬𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍
, (𝑯𝟎: A linear 

regression is appropriate) 

Linear Regression – Evaluating Model 
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Checking Regression Assumptions 
2- Independency of residuals 

 

- Draw Residual Plot Versus Observation Number 

 

- Using Durbin Watson 

Linear Regression – Evaluating Model 
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Checking Regression Assumptions 
2- Independency of residuals 

 

- Draw Residual Plot Versus Observation Number 

 

- Using Durbin Watson 

Linear Regression – Evaluating Model 

values of d less than approximately 

1.5 (or greater than approximately 2.5) lead 

one to suspect positive (or negative) 

serial correlation. 
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Checking Regression Assumptions 
3- Normality of Residuals 

 

- Draw Q-Q Plot, or Box-Plot of Residuals 

 

- Using Normality Tests (such as Kolmogrov-Smirnof, 

Shapiro Wilk, …) 

Linear Regression – Evaluating Model 
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Linear Regression – Evaluating Model 

Checking Regression Assumptions 
4- Homogeneous Residuals’ Variance 

 

- Draw Residuals Versus 𝒙𝒊 

 

- Divide the observations into two groups, then test the 

equality of variance of the groups 
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Linear Regression – Estimation and Prediction 

Confidence interval for 𝐄(𝒚𝒏+𝟏) 
 

𝒚 𝒏+𝟏 ± 𝒕𝜶
𝟐
𝑺𝜺

𝟏

𝒏
+
(𝒙𝒏+𝟏−𝒙 )

𝟐

𝑺𝒙𝒙
 

 

It is easier to estimate an average value E(y)  

than predict an individual „y‟ value. 
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Prediction interval for 𝒚𝒏+𝟏 
 

𝒚 𝒏+𝟏 ± 𝒕𝜶
𝟐
𝑺𝜺 𝟏 +

𝟏

𝒏
+
(𝒙𝒏+𝟏−𝒙 )

𝟐

𝑺𝒙𝒙
 

 

Linear Regression – Estimation and Prediction 
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𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝒊 + 𝒊 
 

 

Linear Regression 

Multiple 

Regression 
When there are 

more than one 

explanatory 

variables 

Multivariate 

Regression 
When there 

are more than 

one response 

variables 


