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Inferences about More than Population
Central Values

Analysis of Variance Method:
ANOVA (AOYV) is a test for comparing more than 2’

populations means, which is developed under
following conditions:
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Inferences about More than Population
Central Values

Analysis of Variance Method:

ANOVA (AOYV) is a test for comparing more than 2’
populations means, which is developed under

following conditions:

- Each of the populations has a normal distribution.

- The variances of the populations are equal.

- Measurements are independent random samples from
their respective populations.
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Inferences about More than Population
Central Values

Analysis of Variance Method:

Population ‘1’

Population ‘t’

Y11 Y1
Sample Y21 Y2
Values : :
Yin, Yin,
Mean V1. Vt.
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Inferences about More than Population
Central Values

Analysis of Variance Method:

Let S% be the sample variance of the ny = iT=1 n;

measurements y;; (vatriability of the whole

measurements about the overall mean)

=122 (yij — y.)z
nr — 1

s =
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Inferences about More than Population
Central Values

Analysis of Variance Method:

Let S% be the sample variance of the ny = iT=1 n;

measurements y;; (vatriability of the whole

measurements about the overall mean)

2
t ng ~
9 i=1 Z,-=1(J’ij -5.)
Total sum o ST nr — 1
of squares T
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Inferences about More than Population
Central Values

Analysis of Variance Method:

t ng t ng
—\2 2
zz Yij —¥.) —ZZ Vi —9i) +znl(yl y.)
i=1j=1 i=1j=1
\ J
! !
Within-Sample Between-Sample
Sum of squares Sum of squares
SSB SSW
S =—— ,Sh, =
Bt—1 """ n,—t
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Inferences about More than Population
Central Values

Analysis of Variance Method:

Sum of Degrees of

Source Squares Freedom Mean Square F Test
Between Samples ~ SSB A | s2=SSB/(t—1) s%/s%
Within Samples SSwW ng—T  s4 =SSW/(ny—t)

Total 758 nr—1
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Inferences about More than Population
Central Values

Analysis of Variance Method:

2

« Lo __Sp
Test Statistic: F = 2 ~F(t—1,ny —t)
Horpg = = e _ L
IR R da kal ° Reject H, if ‘F" exceeds
population means Fo (t-1),mp—t)

differ from the rest
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Inferences about More than Population
Central Values

Checking on AOV Conditions:

- Equality of the population variances
- Using Hartely’s of BFL Test (Brown-Forsythe-Levene)
- When the sample sizes are neatly equal ,

this assumption is less critical

Training Workshop on Statistical Data Analysis 8-21 July 2011 Afsaneh Yazdani



Inferences about More than Population
Central Values

Checking on AOV Conditions:

- Equality of the population variances
- Using Hartely’s of BFL Test (Brown-Forsythe-Levene)
- When the sample sizes are neatly equal ,

‘@
® Using a
transformation
to stabilize the

this assumption is less critical

variance
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Inferences about More than Population

Central Values

Checking on AOV Conditions:

- Equality of the population variances
- Using Hartely’s of BFL Test
- When the sample sizes are neatly equal ,

this assumption is less critical

- Normality
- Using graphs and normality tests
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Inferences about More than Population
Central Values

Checking on AOV Conditions:

- Equality of the population variances
- Using Hartely’s of BFL Test
- When the sample sizes are neatly equal ,

this assumption is less critical

- Normality

- Using graphs and normality tests

A Using
Kruskal-Wallis
Test
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Inferences about More than Population
Central Values

Checking on AOV Conditions:

- Equality of the population variances
- Using Hartely’s of BFL Test
- When the sample sizes are neatly equal ,

this assumption is less critical

- Normality
- Using graphs and normality tests

- Independence

- Careful review of how measurements has been gathered
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Inferences about More than Population
Central Values

Multiple Comparisons:

If Hy: uq = --- = U is rejected, we want to know
which means differ from each othetr.
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Inferences about More than Population
Central Values

Multiple Comparisons:

If Hy: uq = --- = U is rejected, we want to know
which means differ from each othetr.

Multiple-Comparison
—> Procedures
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Inferences about More than Population
Central Values

Multiple Comparisons Procedures

- Fisher’s Least Significant Difference (LSD)
- Tukey’s W
- Student—Newman—Keuls

Procedures for
Pairwise Comparisons
of ‘t’ Population
Means
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Inferences about More than Population
Central Values

Multiple Comparisons Procedures

- Fisher’s Least Significant Difference (LSD)
- Tukey’s W
- Student—Newman—Keuls

Tukey is more
conservative than LSD
and SNK
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Inferences about More than Population
Central Values

Multiple Comparisons Procedures

- Fisher’s Least Significant Difference (LSD)
- Tukey’s W
- Student—Newman—Keuls

Tukey’s limitation
IS that, it must be based
on equal size ‘n’ from

each populatio
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Inferences about More than Population
Central Values

Multiple Comparisons Procedures

- Fisher’s Least Significant Difference (LSD)
- Tukey’s W (Tukey-Kramer W)
- Student—Newman—Keuls

Tukey’s limitation
IS that, it must be based
on equal size ‘n’ from

each populatio
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Inferences about More than Population
Central Values

Multiple Comparisons Procedures

- Scheffe’s Method

More general procedure that can be
used to make all possible
comparisons among
the ‘¢’ population means.
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Inferences about More than Population
Central Values

Multiple Comparisons Procedures

- Scheffe’s Method

- More conservative Procedure
- Can also be used for constructing a
simultaneous confidence interval for all
possible (not necessarily pairwise)
contrasts using the ‘t’ population
means.
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Inferences about More than Population
Central Values

Multiple Comparisons Procedures

- Fisher’s Least Significant Difference (LSD)
- Tukey’s W (Tukey-Kramer W)

- Student—Newman—Keuls
- Scheffe’s Method

- Kruskal-Wallis Nonparametric Procedure
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Categorical Data
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Categorical Data

We sometimes encounter situations in which levels
of a variable of interest are identified by:

- Name

- Rank

- Number of observations occurred at each level of

variable, ...

Training Workshop on Statistical Data Analysis 8-21 July 2011 Afsaneh Yazdani



Categorical Data

We sometimes encounter situations in which levels
of a variable of interest are identified by:

- Name

- Rank

- Number of observations occurred at each level of

variable, ...

Categorical or
Count Data
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Categorical Data

Inferences about a Population
Proportion ‘1’

In binomial experiment, the probability distribution
of ‘y’ (humber of success in ‘n’ identical trials) is:

n!

IS

P(y) =
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Categorical Data

Inferences about a Population
Proportion ‘1’
In binomial experiment, the probability distribution

of ‘y’ (humber of success in ‘n’ identical trials) is:

n!
Y-y T

@
Probability
of Success
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Categorical Data

Inferences about a Population
Proportion ‘1’
In binomial experiment, the probability distribution

of ‘y’ (number of success in ‘n’ identical trials) is:

n!
(1 —m)"Y

P(y) =

y'(n—y)!
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Categorical Data

Confidence Interval for ‘n’ with

Confidence Coefficient of (1-a)

(ﬁ'—Z%/O\'ﬁ-,ﬁ'+Z%6'ﬁ-)

Whete

f(1-7)

n

ﬁ:landaﬁz\/

n
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Categorical Data

Sample Size Required for a 100(1 — a)%
Confidence Interval for ‘n’ of the form T + E

Zé (1 — m)
2

= 2
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Categorical Data

Statistical Test for ‘nt’

(Under Hy, 05 = \/ o (1 — 1y) /N, and ‘n’ must satisfy both nmy = 5
and n(l — Tl'o) = 5)

_ -1
Test Statistic: 2z = — 2 ~N(0,1)
T

H():Tl' < Ty . - . .
{Ha: - Reject Hy if z > —z,
HO:Tl' = Ty . - . »
{Ha:n . RejectHy If z < —z,
] ReieetHy T > g
a- 2
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Categorical Data

Inferences about two populations proportions

Population 1 Population 2
Population Proportion 2 [
Sample Size ny ny
Number of Success Y1 Vo
Sample Proportion 2 = i’l_i &, = 73;_2
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Categorical Data

Confidence Interval for ‘m; — m,’ with
Confidence Coefficient of (1-a)

P

(T — TT2) £ z2 05

—TT
> 1~ T2
Where
5. . — [Md-m)  T(1-72)
Tq1—Ttp ~— nq ny
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Categorical Data

Statistical Test for ‘m; — m,’

(Undet Hy, 83,7, = 1 (1 — 1) /Ny + (1 — 3) /g,

‘n,’ and ‘n,’ must satisfy both nmwy = 5 and n(1 — my) = 5)

o e m1—TT
Test Statistic: z=—""2~N(0,1)
07ty -7z

{Ha:m o RejectHy iIf z > —2z,
{Ha:m o Reject Hy If z < —2z,
T Reject o i [ > o
a-Tl1 2 Z
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Categorical Data

Inferences about ‘k’ proportions

(Chi-square Goodness-of-Fit Test, where E; = nm;)

. F )2
Test Statistic: =Y i EI.E,) ~v2(k — 1)

l

H,: ; = m;y for categoriesi =1, ..., k, ;o are
specified probabilities or proportions
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Categorical Data

Contingency Tables (Cross Tabulations)

Variable 2
Levell ... Levelc
:I) Level 1 Nqq Nic | N
Ie)
©
-
c>5 Level r Nyq Nee | Ny
nq N, n
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Categorical Data

Contingency Tables (Cross Tabulations)

Variable 2

Levell ... Levelc

— | Level 1 Nqq Nqc

L

o

O

| -

S | Levelr Npp oo Mg
niq ne
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Dependence
of variables
means that one
variable has
some
value for
predicting the
other
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Categorical Data

Test of Independence

Test Statistic:
y)

(ni;j—E;j)
1t =Zic1 2j-1— 55— ~%al@r— 1(c—1)]

7

H,: The row and column variables are independent
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Categorical Data

Test of Independence

Test Statistic:

-~

Y
Xz — {=1 Zj;lg There Is an alternative
statistic, called the
- likelthood ratio statistic
H,: The row and cob that is often shown in

computer outputs.

s
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Categorical Data

Measuring Strength of Relation

- Kendall’s Tau Correlation Coefficient

- Contingency Coefficient

- Spearman’s Ranked Cotrelation Coefficient
- Phi’s Coefficient

- Cramer’s V
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Linear
Regression
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Linear Regression

Modeling of the
relationship between
a response variable and a set of explanatory

variables.

8

Regression

Analysis
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Linear Regression

A regression model provides the user with a functional
relationship between the response variable and

explanatory variables that allows the user to:

O Determine which of the explanatory variables have an
effect on the response.

® Explore what happens to the response variable for

specified changes in the explanatory variables.
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Linear Regression

Uses of Regression Models:

- Provides a description of data set (which of the

explanatory variables affect the response variable)

- Provides estimates of the response variable for values of
the explanatory not observed in the study, or expensive

to measure

- Prediction
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Linear Regression

Uses of Regression Models:

. The accuracy of the estimates and
prediction depends on:
How well the final model fits the

observed data

Stability of the conditions during
which observed data were collected,
over the prediction period

. . .\
- Prediction “(.)

Training Workshop on Statistical Data Analysis 8-21 July 2011 Afsaneh Yazdani



Linear Regression

Prediction Versus Explanation

Future Value } LCurrent or past values

Explanation is easier than Prediction

Both of them use the connection between

explanatory (independent) and response (dependent)
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Linear Regression

Simple Regression

There is a single independent variable and the equation for
predicting a dependent variable y’ is a linear function of a

given independent variable ‘x’.

Y, =Po+ P1X; + ¢ /\

I\/ ? Random

Error Term
Intercept Slope
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Linear Regression

Simple Regression

There is a single independent variable and the equation for

predicting a dependent variable y’ is a linear function of a

given independent variable ‘<. "’a
’ .
The slape of
. — . : the equation
¥i=Bo+ B1X;+& - . does not
I\/ ? change as
‘%)’ changes

Intercept Slope
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Linear Regression

Simple Regression

Yi_ 0+ﬁ1X +8l

N =

Intercept

Training Workshop on Statistical Data Analysis

Slope

Y intercept

8-21 July 2011

&Y

Slape=AYIA X
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Linear Regression

Checking for Linearity

Checking by looking at a scatterplot of data

Linear
Relation

OK Choosing - Inverse
Transformations - Sguare Root
’l - Natural
Logarithm
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Linear Regression

Regression Modeling Steps:
1- Specify model and estimate unknown parameters
2- Evaluate model

3- Use model for prediction and estimation
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Linear Regression - Specifying Model

Estimating Model Parameters

Y, =Po+ P1X; + ¢

Least-square estimates for slope and intercept:

. S ~ _ -~ __
ﬁ1=s—xy ; Po=YyY—PB1x

XX

Sxy = 2i(xi = X)(¥i — ) and Sy, = Xi(x; — f)z
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Linear Regression - Specifying Model

Estimating Model Parameters

Y, =Po+ P1X; + ¢

The estimate of the regression slope can potentially be

greatly affected by “high leverage points”.
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Linear Regression - Specifying Model

Estimating Model Parameters

Y, =Po+ P1X; + ¢

The estimate of the regression slope can potentially be

greatly affected by “high leverage points”.

Points that have
very high or. very low values
of independent variables
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Linear Regression - Specifying Model

Estimating Model Parameters

Y, =Po+ P1X; + ¢

The estimate of the regression slope can potentially be

greatly affected by “high leverage points”.

High leverage point whose ‘y’
value is outlier,
Is “High Influence Point”
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Linear Regression - Specifying Model

Estimating Model Parameters

Y, =Po+ P1X; + ¢

The estimate of the regression slope can potentially be

greatly affected by “high leverage points”.

A ‘y’ which is outlier can not
much affect the slope, If it is
not a “high influence point”

Training Workshop on Statistical Data Analysis 8-21 July 2011 Afsaneh Yazdani



Linear Regression - Evaluating Model

Inferences about Regression Parameters

. B1-0
Test Statistic: t = £ ~t,(n—2)

_ Se/\/ Sxx
{Ha:ﬁl >0 Reject Hy if t> t,

{Ha:m <0 Reject Hy if t < —t,
P RS
ar 2
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Linear Regression - Evaluating Model

Inferences about Regression Parameters

. e __ MS(Regresstion) -
Test Statistic: F=—" Residual) F,(1,n—-2)

{Ha:ﬁl >0 Reject Hy if t> t,
{Ha:m <0 Reject Hy if t < —t,
P RS
ar 2
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Linear Regression - Evaluating Model

Inferences about Regression Parameters

Test Statistic: g = Lo 0 ~t,(n—2)

{Ha:ﬁo >0 Reject Hy if t> t,
{Ha:ﬁo <0 Reject Hy if t < —t,
e Rae i o
ar 2
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Linear Regression - Evaluating Model

Examining the model using ‘R*’:

_ Explained Variation SSyoger

RZ — —
Total Variation SSTotal
Rﬁdj _1_ MSResidual
MSTotal
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Linear Regression - Evaluating Model

Examining the model using ‘R*’:

_ Explained Variation SSyoger

RZ — —
Total Variation SSTotal
Rﬁdj _1_ MSResidual
MSTotal

Value closer to ‘1’
the model explains the variation more
S -
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Linear Regression - Evaluation

Assumptions of Regression Analysis

- The relation is linear, so that the errors all have expected
value zero (E(g;) = 0; for all )

- The errors are independent of each other.

- The errors are all normally distributed

- The etrors all have the same variance (Var(g;) = %)

Ei"’N(O,O'Z)
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Linear Regression - Evaluating Model

Checking Regression Assumptions

1- Linearity

- Draw Residual Plot Versus y; = by + b1x; to check for

existence of non-linearity pattern

MSLack

- Using F-Test, where F* = s (Hp: A linear

MSpyre Experimental
regression is appropriate)
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Linear Regression - Evaluating Model

Checking Regression Assumptions
2- Independency of residuals

- Draw Residual Plot Versus Observation Number

- Using Durbin Watson
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Linear Regression - Evaluating Model

Checking Regression Assumptions
2- Independency of residuals

- Draw Residual Plot Versus Observation Number

- Using Durbin Watson

values of d less than approximately

1.5 (or greater than approximately 2.5) lead
one to suspect positive (or negative)
serial correlation.
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Linear Regression - Evaluating Model

Checking Regression Assumptions
3- Normality of Residuals

- Draw Q-Q Plot, or Box-Plot of Residuals

- Using Normality Tests (such as Kolmogrov-Smirnof,
Shapiro Wilk, ...)
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Linear Regression - Evaluating Model

Checking Regression Assumptions
4- Homogeneous Residuals’ Variance

- Draw Residuals Versus X;

- Divide the observations into two groups, then test the

equality of variance of the groups
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Linear Regression - Estimation and Prediction

Confidence interval for E(y,,. 1)

1 (x,.1—Xx)>
j\’n+1 r tﬁse —F ( i )
2 \ n Sxx

It is easier to estimate an average value E(y)
than predict an individual ‘y’ value.

Training Workshop on Statistical Data Analysis 8-21 July 2011 Afsaneh Yazdani



Linear Regression - Estimation and Prediction

Prediction interval for y,, . {

1 (x,.1—Xx)>
yn+1itﬁse 1+_+( s )
2y n S v
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Linear Regression

Y =Ppo+ P1X; + ¢

o
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